
Computer Science

Authored by

rud and puppy

(0478)

1st edition, for examination until 2028

© r/IGCSE Resources 2024

Basic Programming Syntax

r/IGCSE
Resources

Cambridge IGCSE
for

Information

This booklet explains the structures of Pseudocode and Python with clear examples to help the user
understand the basics of programming using these programming languages.

All information provided in this document is aligned inclusively with the Cambridge IGCSE™ and
Cambridge O Level Computer Science syllabus covering examinations from 2023 to 2028.

For additional information or queries, please contact @neekh on Discord.

Contents

1 Comments 3

2 Data Types 4

3 Declarations 5
3.1 Variable Declaration . 5
3.2 Constant Declaration . 5
3.3 Assignment . 6

4 Functions 7
4.1 Input and Output . 7
4.2 Other Library Functions . 8

5 Operations 9
5.1 Arithmetic Operations . 9
5.2 Logical Operations . 10
5.3 String Operations . 10

6 Iterations and Loops 12
6.1 Count-controlled FOR Loop . 12
6.2 Post-conditional REPEAT Loop . 13
6.3 Pre-conditional WHILE Loop . 14

7 Selections 15
7.1 IF statements . 15
7.2 CASE statements . 16

8 Arrays 18
8.1 1D Arrays . 18
8.2 2D Arrays . 19

9 File Handling 20
9.1 Pseudocode . 20
9.2 Python . 21

10 Procedures and Functions 22
10.1 Procedures . 22
10.2 Functions . 23

2

Comments

Comments in code act as a formof note that programmersmight add to explain sections of programs
or other forms of logic. They are ignored by the compiler when the program is being executed. These
comments helpmake the codemaintainable andmanageable both for the programauthor andother
programmers.

Comments can be generalized into three forms, these are as follows:

• Multi-line comments

• Single-line comments

• Inline comments

In Pseudocode, all forms of comments are preceded with //.

Pseudocode

Multi-line comments
// This is an example of a multi-line comment
// It is normally used for larger explanations

Single-line comments
// This is an example of a single-line comment

Inline comments
OUTPUT Result // This is an example of an inline comment

In Python, multi-line comments are delimited by ''' and, single-line and inline comments are
preceded with #.

Python

Multi-line comments
'''
This is an example of a multi-line comment
It is normally used for larger explanations
'''

Single-line comments
This is an example of a single-line comment

Inline comments
print(result) # This is an example of an inline comment

3

Data Types

In programming, there are a few keywords used to designate certain data types, these are as follows:

Pseudocode Python
INTEGER int
REAL float
CHAR strwith single character
STRING str
BOOLEAN bool

Literals
Literals of these data types are written as follows:

INTEGER written as normal in the denary numbering system, e.g: 5, -3, 0

REAL writtenwith at least onedigit oneither sideof thedecimal point (0sbeing
added if necessary), e.g. 3.14, -4.5, 0.0

CHAR written as a single character delimited by single quotes, e.g. 'x', '@'.
In Python, characters are written as a string with a single character.

STRING delimited by double quotes. Strings may be empty, e.g. "An orange
cat", " ".

BOOLEAN written as either TRUE or FALSE.

4

Declarations

In programming, a declaration is a statement that introduces an element to a program. It provides
the compiler with explicit information about the element before it is used. Additionally, by using
declarations, programmers enhance the accessibility and maintainability of their code.

In Pseudocode, there are two types of declarations, these are as follows:

• Variable declaration

• Constant declaration

Variable Declaration
Variables are declared in the following format:

DECLARE <identifier> : <data type>

Pseudocode

Declaration of the INTEGER data type
DECLARE NumTeams : INTEGER

Declaration of the REAL data type
DECLARE Score : REAL

Declaration of the CHAR data type
DECLARE Choice : CHAR

Declaration of the STRING data type
DECLARE Feedback : STRING

Declaration of the BOOLEAN data type
DECLARE Found : BOOLEAN

Constant Declaration
Constants are declared by stating the identifier and the literal value in the following format:

CONSTANT <identifier> ← <value>

Pseudocode

Constant declaration of integer
CONSTANT UpperBound ← 15

Constant declaration of decimal number
CONSTANT MaxTemp ← 123.4

5

Assignment
In Pseudocode, the assignment operator is ←

Assignment statements are written in the following format:

<identifier> ← <value>

Pseudocode

Assigning a literal value to a variable
MaxAttempt ← 4

Assigning an expression to a variable
ActualScore ← Score * 100

Assigning another variable to a variable
CurrentTemp ← Temp

In Python, the assignment operator is =

Assignment statements are written in the following format:

<identifier> = <value>

Python

Assigning a literal value to a variable
max_attempt = 8

Assigning a function to a variable
answer = input()

Assigning an expression to a variable
average_score = score / 8

Assigning another variable to a variable
current_score = score

6

Functions

In programming there are a few built-in library functions that may be provided.

Input and Output
In Pseudocode, values can be input as follows:

INPUT <identifier>

Values can be output as follows:

OUTPUT <value(s)>

Several values, separated by commas, can be output using the same function.

Pseudocode

Input function
INPUT Answer

Output function
OUTPUT Score

Output function outputting multiple values
OUTPUT AvgScore, TotalScore, HighestScore

In Python, values can be input as follows:

<identifier> = input(<prompt>)

Prompts are optional. They must be literals of the STRING data type.

Values can be output as follows:

print(<value(s)>)

Several values, separated by commas, can be output using the same function.

Python

Input function
answer = input()

Input function with prompt
num_players = input("Enter the number of players: ")

Output function
print(score)

Output function outputting multiple values
print(avg_score, total_score, highest_score)

7

Other Library Functions
In Pseudocode the following library functions are practiced:

ROUND(<identifier>, <places>)

Returns the value of the identifier rounded toplaces number of decimal places. The identifier
should be any value that evaluates to the REAL data type whilst the number of places should be a
positive integer.

RANDOM()

Returns a random decimal number between 0 and 1 inclusive.

Pseudocode

Rounding function
ROUND(3.1415, 1)
Returns 3.1

Random function
RANDOM() * 5
Returns a random decimal number between 0 and 5 inclusive

ROUND(RANDOM() * 10), 0)
Returns a random integer between 0 and 10 inclusive

In Python these library functions can be written as:

round(<identifier>, <places>)

Returns the value of the identifier rounded toplaces number of decimal places. The identifier
should be any value that evaluates to the REAL data type whilst the number of places should be a
positive integer.

random()

Returns a random decimal number between 0 and 1 inclusive.

Python

Rounding function
round(3.1415, 1)
Returns 3.1

Random function
random() * 5
Returns a random decimal number between 0 and 5 inclusive

round(random() * 10), 0)
Returns a random integer between 0 and 10 inclusive

8

Operations

In programming, there are three types of operations, these are as follows:

• Arithmetic operations

• Logical operations

• String operations

Arithmetic Operations
For arithmetic operations, standard mathematical operator symbols are used. These operator
symbols are as follows:

Pseudocode Python
Addition + +
Subtraction - -
Multiplication * *
Division / /
Raised to the power of ^ **

Pseudocode

Calculating the area of a circle
Area ← Pi * Radius ^ 2

Integer division operations may also be used for calculations.

In Pseudocode, these integer division operations are written as follows:

DIV(<dividend>, <divisor>)

Returns the quotient of dividend divided by the divisorwith the fractional part discarded.

MOD(<dividend>, <divisor>)

Returns the remainder of dividend divided by the divisor.

Pseudocode

DIV integer division operation
DIV(10, 3)
Returns 3

MOD integer division operation
MOD(10, 3)
Returns 1

9

In Python, these integer division operations are written as follows:

<dividend> // <divisor>

Returns the quotient of dividend divided by the divisorwith the fractional part discarded.

<dividend> % <divisor>

Returns the remainder of dividend divided by the divisor.

Python

DIV integer division operation
10 // 3
Returns 3

MOD integer division operation
10 % 3
Returns 1

Logical Operations
The following symbols are used for logical operations:

Pseudocode Python
Equal to = ==
Less than < <
Less than or equal to <= <=
Greater than > >
Greater than or equal to >= >=
Not equal to <> !=

These operations evaluate expressions to BOOLEAN data type values.

String Operations
String operations are used to manipulate values of the STRING data type.

In Pseudocode, the basic string operations are written as follows:

LENGTH(<identifier>)

Returns the integer value representing the length of the string.

LCASE(<identifier>)

Returns the string/character with all characters in lower case.

UCASE(<identifier>)

Returns the string/character with all characters in upper case.

SUBSTRING(<identifier>, <start>, <length>)

Returns a string of the length length starting at the position start. The length and start
should be a positive integer.

10

Pseudocode

Length string operation
LENGTH("Good evening")
Returns 12

Lower case string operation
LCASE('H')
Returns 'h'

Upper case string operation
UCASE("A blue bird")
Returns "A BLUE BIRD"

Substring string operation
SUBSTRING("Happy Days", 1, 5)
Returns "Happy"

In Python, the basic string operations are written as follows:

len(<identifier>)

Returns the integer value representing the length of the string.

(<identifier>).lower()

Returns the string/character with all characters in lower case.

(<identifier>).upper()

Returns the string/character with all characters in upper case.

<identifier>[<start>:<end>]

Returns a string that starts from the position start and ends at the position end exclusive

Python

Length string operation
len("Rud is the best")
Returns 15

Lower case string operation
'X'.lower()
Returns 'x'

Upper case string operation
"The orange painting".upper()
Returns "THE ORANGE PAINTING"

Substring string operation
"Hello Rud"[6:9]
Returns "Rud"

11

Iterations and Loops

In programming, there are three types of iterations. These are as follows:

• Count-controlled FOR loop

• Post-conditional REPEAT loop

• Pre-conditional WHILE loop

Count-controlled FOR Loop
In count-controlled loop, the identifier must be a variable of the INTEGER data type.

For Pseudocode, count-controlled loops are written in the following structure:

FOR <identifier> ← <start> TO <finish>
<statements>

NEXT <identifier>

The identifier is assigned each of the integer values from start to finish inclusive, executing the
statements inside the loop after each assignment.

If start is equal tofinish, the statements will only be executed once and if start is greater than
finish, the statements will not be executed at all.

An increment can be specified as follows:

FOR <identifier> ← <start> TO <finish> STEP <increment>
<statements>

NEXT <identifier>

The incrementmust be anexpression that evaluates to an integer. Theidentifierwill be assigned
the values from start in successive increments of increment until it reaches finish. If it goes
past finish, the loop will be terminated. increment can be negative.

Pseudocode

Count-controlled loop
FOR Index ← 1 TO 30

OUTPUT Numbers[Index]
NEXT Index

Nested count-controlled loop
FOR Row ← 5 TO 10

FOR Column ← 1 TO 3
OUTPUT Value[Row, Column]

NEXT Column
NEXT Row

Count-controlled loop with specified increment
FOR Index ← 1 TO 30 STEP 5

OUTPUT Numbers[Index]
NEXT Index

12

In Python, count-controlled loops are written as follows:

for <identifier> in range(<start>, <finish>):
<statements>

The range function creates a list from start to finish exclusively. If the start is not specified it
will be set to the default start position, 0.

An increment can be specified as follows:

for <identifier> in range(<start>, <finish>, <increment>):
<statements>

The increment must be an expression that evaluates to an integer. The identifier will be assigned the
values from start in successive increments of increment until it reaches finish. If it goes past
finish, the loop will be terminated. increment can be negative. start is mandatory to specify
any step increment.

Python

Count-controlled loop
for index in range(30):

print(numbers[index])

Nested count-controlled loop
for row in range(5, 10):

for column in range(3):
print(numbers[row][column])

Count-controlled loop with specified increment
for index in range(1, 30, 5):

print(numbers[index])

Post-conditional REPEAT Loop
In post-conditional loop, the condition must be an expression that evaluates to an BOOLEAN data
type.

The statements in the post-conditional loop will be executed at least once. The condition is tested
after the statements are executed and if the condition evaluates toTRUE the loop is then terminated,
otherwise the process is repeated again.

In Pseudocode, post-conditional loops are written as follows:

REPEAT
<statements>

UNTIL <conditions>

Pseudocode

Post-conditional loop
REPEAT

INPUT InpPassword
UNTIL InpPassword = Password

13

Pre-conditional WHILE Loop
In pre-conditional loop, the condition must be an expression that evaluates to an BOOLEAN data
type.

The condition is tested before the statements are executed, and the statements will only be executed
if the condition evaluates toTRUE. After the conditions have been executed the conditions are tested
again. The loop terminates when the condition evaluates to FALSE.

In Pseudocode, pre-conditional loops are written as follows:

WHILE <conditions> DO
<statements>

ENDWHILE

Pseudocode

Pre-conditional loop
WHILE Number < 10 DO

OUTPUT Number
Number ← Number + 1

ENDWHILE

In Python, pre-conditional loops are written as follows:

while <conditions>:
<statements>

Python

Pre-conditional loop
while number < 10:

print(number)
number = number + 1

14

Selections

There are two functions of selections this booklet practices, these are as follows:

• IF statements

• CASE statements

IF statements
In Pseudocode, an IF statement without an ELSE clause is written as follows:

IF <conditions>
THEN

<statements>
ENDIF

IF statement with an ELSE clause is written as follows:

IF <conditions>
THEN

<statements>
ELSE

<statements>
ENDIF

Pseudocode

IF statement without ELSE clause
IF Answer = CorrectAnswer

THEN
Score ← Score + 1

ENDIF

IF statement with ELSE clause
IF Answer = CorrectAnswer

THEN
Score ← Score + 1

ELSE
OUTPUT "Wrong Answer!"

ENDIF

In Python, an IF statement without any clauses is written as follows:

if <condition>:
<statements>

An IF statement with an elif clause is written as follows:

if <condition>:
<statements>

elif <condition>:
<statements>

There can be multiple elif clauses in a IF selection statement. Please note that elif clauses do
not completely align with the syllabus, candidates should use it with caution.

15

An IF statement with an ELSE clause is written as follows:

if <condition>:
<statements>

else:
<statements>

Python

IF statement with no clause
if valid:

print("Permission granted")

IF statement with an elif clause
if red_score > blue_score:

print("Red team have won!")
elif red_score == blue_score:

print("Tie!")

IF statement with an ELSE clause
if found:

score = score + 1
else:

print("Failed!")

CASE statements
In Pseudocode, CASE statements allow one out of several branches of code to be executed
depending on the value of the variable.

CASE statements are written as follows:

CASE OF <identifier>
<value n> : <statements>

ENDCASE

An OTHERWISE clause can be added as follows:

CASE OF <identifiers>
<value n> : <statements>
OTHERWISE <statements>

ENDCASE

These clauses are tested in a sequence. When a value that applies is found, it’s statement is executed
and the CASE statement is completed. If present, an OTHERWISE clause must be the last case. It’s
statement will be executed if none of the preceding cases apply.

16

Pseudocode

CASE statement
CASE OF Choice

1 : OUTPUT "Birch wood selected"
2 : OUTPUT "Spruce wood selected"
3 : OUTPUT "Fir wood selected"

ENDCASE

CASE statement with an OTHERWISE clause
CASE OF Movement

'w' : ycord ← ycord + 1
'a' : xcord ← xcord - 1
's' : ycord ← ycord - 1
'd' : xcord ← xcord + 1
OTHERWISE OUTPUT "Invalid choice!"

ENDCASE

In Python, CASE statements are written as follows:

match <identifier>:
case <value n>:

<statements>

An OTHERWISE clause (indicated by _) can be added as follows:

match <identifiers>:
case <value n>:

<statements>
case _:

<statements>

Python

CASE statement with an OTHERWISE clause
match movement:

case 'w':
ycord = ycord + 1

case 'a':
xcord = xcord - 1

case 's':
ycord = ycord - 1

case 'd':
xcord = xcord + 1

case _:
print("Invalid Choice!")

17

Arrays

Arrays are fixed-length structures of elements that have identical data type, accessible by consecutive
index numbers. Square brackets, [<index>] are used to indicate the array indices.

In programming, arrays can have multiple dimensions, however this booklet only practices 1D and
2D arrays.

1D Arrays
In Pseudocode, 1D arrays are declared as follows:

DECLARE <identifier> : ARRAY[<l>:<u>] OF <data type>

Where l stands for lower bound and u stands for upper bound.

1D arrays are assigned in the following way:

<identifier>[<index>] ← <value>

Pseudocode

1D array declaration
DECLARE StudentName : ARRAY[1:30] OF STRING

1D array assignment
StudentName[19] ← "John Doe"

In Python, 1D arrays are initialized as follows:

<identifier> = [None] * <u>
<identifier> = [0] * <u>

Where u stands for upper bound.

1D arrays are assigned in the following way:

<identifier>[<index>] = <value>

Python

1D array initialization
student_marks = [0] * 30

1D array assignment
student_marks[15] = 88

18

2D Arrays
In Pseudocode, 2D arrays are declared as follows:

DECLARE <identifier> : ARRAY[<lr>:<ur>, <lc>:<uc>] OF <data type>

Wherer stands for row, c stands for column, l stands for lower bound andu stands for upper bound.

2D arrays are assigned as follows:

<identifier>[<ri>, <ci>] ← <value>

Where ri stands for row index and ci stands for column index.

Pseudocode

2D array declaration
DECLARE Grade : ARRAY[1:30, 1:5] OF CHAR

2D array assignment
Grade[16, 3] ← 'A'

In Python, 2D arrays are initialized as follows:

<identifier> = [[None] * <ur>] * <uc>
<identifier> = [[0] * <ur>] * <uc>

Where r stands for row, c stands for column and u stands for upper bound.

2D arrays are assigned as follows:

<identifier>[<ri>][<ci>] ← <value>

Where ri stands for row index and ci stands for column index.

Python

2D array initialization
student_attendance = [[None] * 10] * 5

2D array assignment
student_attendance[8][3] = True

19

File Handling

Pseudocode

File Opening

When opening a file, the mode of operation of the file should be stated as follows:

OPENFILE <file identifier> FOR <file mode>

The file identifier will be the name of the file. The following file modes can be used:

READ for data to be read from the file
WRITE for data to be written to a file. In case the file does not exist, a new file will be created.

Existing data is overridden.

A file can only be opened in one mode at a time.

Reading from File

Data is read from the file (after the file has been opened in the READmode) as follows:

READFILE <file identifier>, <identifier>

When executed, a line of text is read from the file and assigned to the identifier.

Writing from File

Data is written to a file (after the file has been opened in WRITEmode) as follows:

WRITE <file identifier>, <identifier>

When executed, the value from the identifier is assigned to the file.

File Closing

When a file is no longer in use, it is closed as follows:

CLOSEFILE <file identifier>

Pseudocode

Opening file in read mode
OPENFILE "Names.txt" FOR READ

Opening file in write mode
OPENFILE "Remarks.txt" FOR WRITE

Reading from a file
READFILE "Names.txt", Data

Writing to a file
WRITEFILE "Remarks.txt", Remark

Closing file
CLOSEFILE "Names.txt"

20

Python

File Opening

When opening a file, the mode of operation of the file should be stated as follows:

<operator> = open(<file identifier>, <file mode>)

The operator is used as a reference to the file opened. The file identifier will be the name of the file.
The following file modes are used:

r for data to be read from the file
w for data to be written to a file. In case the file does not exist, a new file will be created. Existing

data is overridden.
a for data to be appended to a file. Existing data will not be overridden

A file can only be opened in one mode at a time.

Reading from File

Data is read from the file (after the file has been opened in the rmode) as follows:

<identifier> = <operator>.read()

When executed, a line of text is read from the file and assigned to the identifier.

Writing from File

Data is written to a file (after the file has been opened in the w or amode) as follows:

<operator>.write(<identifier>)

When executed, the value from the identifier is assigned to the file.

File Closing

When a file is no longer in use, it is closed as follows:

<operator>.close()

Python

Opening file in read mode
file_a = open("Names.txt", "r")

Opening file in append mode
file_b = open("StudentRegister.txt", "a")

Reading from a file
data = file_a.read()

Writing to a file
file_b.write("Jane Doe")

Closing file
file_a.close()

21

Procedures and Functions

Procedures and functions are always defined at the top of the program.

Procedures
In Pseudocode, a procedure with no parameters is defined as follows:

PROCEDURE <identifier>
<statements>

ENDPROCEDURE

A procedure with parameters is defined as follows:

PROCEDURE <identifier>(<par n> : <data type>)
<statements>

ENDPROCEDURE

When used, par n is the identifier for the parameters of the procedure. These will be used as
variables in the statements of the procedure.

Procedures should be called as follows:

CALL <identifier>
CALL <identifier>(<val n>)

When a procedure is called, if any parameters are present, they are substituted by the values, and the
statements are executed.

Pseudocode

Defining procedure with no parameter
PROCEDURE DisplayError

OUTPUT "Invalid response! Try again"
ENDPROCEDURE

Defining procedure with parameter
PROCEDURE CalculateScore(RawScore:INTEGER)

FullScore ← (RawScore/60) * 100
HalfScore ← (RawScore/60) * 50
OUTPUT FullScore, HalfScore

ENDPROCEDURE

Calling procedure with no parameter
CALL DisplayError

Calling procedure with parameter
CALL CalculateScore(48)
Returns 80 and 40

22

Functions
In Pseudocode, functions behave the same way as procedures except it only returns one singular
value. During definition the data type of the value returned has to be stated.

A function with no parameter is defined as follows:

FUNCTION <identifier> RETURNS <data type>
<statements>

ENDFUNCTION

A function with parameter is defined as follows:

FUNCTION <identifier>(<par n>:<data type>) RETURNS <data type>
<statements>

ENDFUNCTION

Function calls are not a complete program statement; the keyword CALL should not be used when
calling a function. Instead, functions should only be called as part of an expression.

Pseudocode

Defining function
FUNCTION SumSquare(Num1:INTEGER, Num2:INTEGER) RETURNS INTEGER

RETURN Num1 ^ 2 + Num2 ^ 2
ENDFUNCTION

Using function
OUTPUT "Sum of squares: ", SumSquare(5, 10)

In Python, functions behave the same way as procedures.

Function without parameters are defined as follows:

def <identifier>():
<statements>

Function with parameters are defined as follows:

def <identifier>(<par n>):
<statements>

When used, par n is the identifier for the parameters of the function. Thesewill be used as variables
in the statements of the function.

Function calls are not a complete program statement. Instead, functions should only be called as a
part of an expression.

Python

Defining function
def sum_square(num_1, num_2):

print(num_1 ** 2 + num_2 ** 2)

Using function
print("Sum of squares", sum_square(5, 10))

23

© r/IGCSE Resources 2024

Acknowledgments and Information:

The information on this guide has been generously prepared by current students/alumni;
the authors have been acknowledged where possible. Links to external sites embedded in
this document are not affiliated with or operated by r/IGCSE.

This guide is meant to be for educational purposes only and is to remain free of cost for
the benefit of all students.

For any suggested changes or corrections to this document, please contact the r/IGCSE
staff team via email or on the r/IGCSE Discord server.

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

© UCLES 2020 as the publisher of the CAIE Computer Science syllabus

© r/IGCSE Resources 2024, authored by rud and puppy

r/IGCSE Resources
r/IGCSE Resources repository | r/IGCSE subreddit | Our Discord server

igcse.reddit.com

discord.gg/igcse

mailto:igcseresources.1@gmail.com
https://discord.gg/igcse
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://sites.google.com/view/igcseresources
https://igcse.reddit.com/
https://discord.gg/igcse

