

r/IGCSE Resources

Formula Sheet for Cambridge IGCSE^m Physics (0625/0972)

by Zhan Xuan Chong

1st edition, for examination until 2025

Version 1

Note from the author

*This formula list consists of all the necessary formula that you must remember for the IGCSE Physics exam. Slowly remember these every day. (CBA = Can be also)

I hope you guys can remember all the formula for IGCSE Physics, and good luck in your exams!

Formula	What it means	Unit (can vary)
v = d ÷ t	v = velocity s = speed t = time	Velocity m/s (can vary)
D = s x t	D = distance s = speed	Distance-Speed Time
Average speed = total distance ÷ total time	N/A	Average speed N/A
a = v ÷ t a = (v-u) ÷ t v = u + at	a = acceleration v = starting/initial velocity t = initial time	Acceleration m/s^2
g = W ÷ m *2023: Free Fall = 9.8 m/s^2	g = gravitational field strength W = weight m = mass	Gravitational F. Strgth N/m (Newton)
p = m ÷ V	p = density m = mass V = volume	Density kg/m^3
$s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} t(v+u)$ $v^2 = u^2 + 2as$	s = displacement u = initial velocity a = acceleration t = time	Displacement m
F = kx CBA: (k = F ÷ x)	F = force k = spring constant x = extension	Hooke's Law Nm
m = fd f1d1 = f2d2	m = moments f = force d = perpendicular distance	Moments & Principle Nm
p = mv	p = momentum m = mass v = velocity	Momentum kg m/s
Impulse = $f x t$	f = force	Impulse
F = p ÷ t	F = resultant force p = momentum t = time	Resultant Force

Chapter 1: Motion, forces, and energy

F = ma	F = force m = mass a = acceleration	Newton Second Law
K.E = ½ mv^2 K.E = GPE = Efficiency x Input	m = mass v = velocity	Kinetic Energy J (joules)
GPE = mgh	m = mass g = gravity (10) h = height	Gravitational P. Energy
W = F x d	W = work done F = force d = distance	Work Done
(useful energy output ÷ total energy input) x 100%	N/A	Efficiency (1) %
(useful power output ÷ total power input) x 100%	N/A	Efficiency (2) %
$P = W \div t$ $P = E \div t$	P = power W = work done E = energy transferred t = time	Power (In Energy) Watts (W)
p = F ÷ A	p = pressure F = force A = area	Pressure N/m^2 or Pa (Pascals)
p = pgh	p = pressure p = density g = gravity h = height	Pressure in Liquids N/m^2 or Pa
m1u1 +m2u2 = m1v1 +m2v2	m (1) or (2) = mass obj. v (1) or (2) = initial velocity	Elastic Collision (COM) kg m/s
m1v1i + m2v2i = (m1 + m2) VF	m (1) or (2) = mass obj. v (1) or (2)/VF = Final vlcy	Inelastic Collision (COM) kg m/s

Chapter 2: Thermal Physics

Formula	What it means	Unit (can vary)
T (in K) = θ (in °C) + 273	T = temperature Θ = theta	Temperature (Kelvin) K
pV = constant p1v1 = p2v2	p = pressure of gas v = volume of gas	Boyle Law N/A
c = E \div m θ E = mc θ (Thermal Energy) (Can be referred as Q in terms of heat energy)	c = specific heat capacity E = change in thermal eg. m = mass (kg) θ = change in temperature	Specific Heat Capacity J/kg°C

Chapter 3: Waves

Formula	What it means	Unit (can vary)
$v = f \lambda$	v = Wave speed f = frequency λ = Wavelength (lambda)	Wave Speed m/s
T = 1 ÷ f	T = wave period f = frequency	Wave Period (Frequency) s
i = r	i = angle of incidence r = angle of reflection	Law of Reflection ° (degree)

Chapter 4: Electricity and Magnetism

Formula	What it means	Unit (can vary)
I = Q ÷ t	I = current (A) Q = coulombs (charge) t = time (seconds)	Current A (Amperes)
E = W ÷ Q	E = electromotive force W = work done Q = coulombs (charge)	Electromotive Force V (volts)
V = W ÷ Q	V = potential difference W = work done Q = coulombs (charge)	Potential Difference V (volts)
R = V ÷ I	R = resistance V = voltage I = current	Resistance Ω (ohms)
P = I x V	P = power I = current V = voltage	Power W (watts)

E = IVt	E = energy I = current	Energy in Power J (joules)
Also can be in E = P x t	V= Voltage t = time	(Energy is related to Power)
Series Circuit I (total) = $I(1) = I(2) = I(3)$ V (total) = V(1) + V(2) + V(3) R (total) = R(1) + R(2) + R(3)	I = current V = voltage R = resistance	Current, Resistance and Voltage in a Series Circuit (A, V or Ω)
Parallel Circuit I (total) = $I(1) + I(2) + I(3)$ V (total) = V(1) = V(2) = V(3) 1/R(total) = $1/R(1) + 1/R(2) \dots$	I = current V = voltage R = resistance	Current, Resistance and Voltage in a Parallel Circuit (A, V or Ω)
R1 ÷ R2 = V1 ÷ V2	R = resistance V = voltage	Two Resistors in P.Divider N/A
V(p) ÷ V(s) = N(p) ÷ N(s)	V = coil N = no. of coil Where (p and s) means Primary & Secondary.	Step Up-Step Down Transformer
lpVp = IsVs (P = Primary) (S = Secondary)	I = current V = voltage	For a 100% Efficient Transformer
P = I ^2 x R	P = power I = current R = resistance	Electric Power W (watts)

Chapter 5: Nuclear Physics (No Formulas are present)

Name	Symbol	Relative Mars	Relative Charge
Proton	P	l	+le
Neutron	p	i	0
Electron	e	1/1840	-18

Radialion	Mass	Charge	lopising?	Penetrating ability
Alpha (α) particles	Ч	t2	High	Weak
Beta (B) particles	1/1840	- (Mild	Mild
Gamma (Y) rays	0	0	Weak	plign

	Alpha Emissions	Beta Emissions	Gampha Emissions
Detail	mode of 2p and 2e ⁻ (heliuph nucleus)	Beta particles = fast-moving criction ejected from the nucleus	High energy electromagnetic waves
When decay	lose 2p and 2n	a peutron in the nucleus changes to a proton and an electron	usually not emitted an awn 6 para of oc- and B-decay
Element	changes	changes	same
Diagram	nggen → @G®		
Equalism :	$ {}^{A}_{z} X \rightarrow {}^{A-4}_{z-2} Y + {}^{4}_{z} Q $	${}^{A}_{7}X \rightarrow {}^{A}_{2+1}Y + {}^{o}_{-1}\beta^{-1}$	${}^{A}_{z} \times \rightarrow {}^{A}_{z} \times + {}^{o}_{o} \times$

Chapter 6: Space Physics

Formula	What it means	Unit (can vary)
V = 2πr ÷ T	V = velocity r = radius T = orbital period	Orbital Speed (Average) m/sec
H(0) = v ÷ d	H(0) = Hubble constant v = recessional velocity d = distance to galaxy	Hubble Constant s^-1 Estimate: 2.2 × 10^-18
d ÷ v = 1 ÷ H(0)	d = distance v = velocity H(0) = Hubble constant	Age of the Universe N/A

r/IGCSE Resources

<u>r/IGCSE Resources repository</u> <u>r/IGCSE subreddit</u> <u>Official Discord Server</u>

Subreddit: igcse.reddit.com

Official Discord Server: discord.gg/IGCSE

Acknowledgements and Information:

© UCLES 2018 as the publisher of the Cambridge IGCSE™ Physics (0625/0972) syllabus

© r/IGCSE Resources 2023, authored by Zhan Xuan Chong

The information on this booklet was generously prepared by alumni who have taken the subject, and the author(s) have been acknowledged where possible. The website links which may be in this document should not be understood to be an endorsement of that website or the site/folder's owners (or their products/services).

This booklet is meant to be for educational purposes only, and is to remain free of cost for the benefit of all students.

The moderators of r/IGCSE will be pleased to make amendments at the earliest possible opportunity if requested.

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0</u> International License.

© r/IGCSE Resources 2023