

r/IGCSE Resources

Formula flashcards for Pearson Edexcel iGCSE Mathematics (4MA1) and Further Pure Mathematics (4PM1)

by Kirsty

Table of Contents

Foundation tier Higher tier Further Pure Maths

SLIDE 3 SLIDE 18 SLIDE 42

Foundation Tier (4MA1)

© r/IGCSE Resources 2022

Formula not given in exam

© r/IGCSE Resources 2022

Pythagoras Theorem

 $a^2 + b^2 = c^2$

- only applies to right angle triangles
- used to find the length of sides

Area of a rectangle

 $l \times w$

Area of triangle $\frac{1}{2}b \times h$

- sometimes, the diagonal is given so you can use pythagoras theorem to find h

Area of parallelogram

 $b \times h$

- use pythagoras theorem to find h

Volume of cuboid

$l \times w \times h$

Circumference of a circle

- may also be written as 'perimeter' in exam Qs

Area of a circle

- always pay attention to the units given and the units they want in your answer

Trigonometric ratios (right-angled triangles)

sine $x = \frac{0}{h}$ o = opposite a = adjacent h = hypotenuse $\cos x = \frac{a}{h}$ remember: sOH cAH tOA $\tan x = \frac{0}{a}$

nth term (arithmetic series)

$$\mathbf{u}_{\mathbf{n}} = \mathbf{a} + (\mathbf{n} - 1)\mathbf{d}$$

a = first term

d = common difference

n = number of terms

Formula given in exam

© r/IGCSE Resources 2022

Area of trapezium

 $\frac{1}{2}(a+b)h$

- use pythagoras theorem to find h

Volume of prism

- cross section area \times length
 - applicable to any prism

Curved surface area of cylinder $2\pi rh$

- curved area + area of 2 circle (top + base) = total surface area

Higher Tier (4MA1)

© r/IGCSE Resources 2022

Formula not given in exam

© r/IGCSE Resources 2022

Pythagoras Theorem

 $a^2 + b^2 = c^2$

- only applies to right angle triangles
- used to find the length of sides

Area of a rectangle

 $l \times w$

Area of triangle $\frac{1}{2}b \times h$

- sometimes, the diagonal is given so you can use pythagoras theorem to find h

Area of parallelogram

 $b \times h$

- use pythagoras theorem to find h

Volume of cuboid

$l \times w \times h$

Circumference of a circle

- may also be written as 'perimeter' in exam Qs

Area of a circle

- always pay attention to the units given and the units they want in your answer

Trigonometric ratios (right-angled triangles)

sine $x = \frac{0}{h}$ o = opposite a = adjacent h = hypotenuse $\cos x = \frac{a}{h}$ remember: sOH cAH tOA $\tan x = \frac{0}{a}$

nth term (arithmetic series)

$$\mathbf{u}_{\mathbf{n}} = \mathbf{a} + (\mathbf{n} - 1)\mathbf{d}$$

a = first term

d = common difference

n = number of terms

Volume of pyramid

$\frac{1}{3} \times base area \times h$

- applicable to any pyramid

Sector arc length $2\pi r \times \frac{\theta}{360}$

- perimeter = arc length + 2r

Area of a sector

$$\pi r^2 \times \frac{\theta}{360}$$

Formula given in exam

© r/IGCSE Resources 2022

Area of trapezium

 $\frac{1}{2}(a+b)h$

- use pythagoras theorem to find h

Curved surface area of cylinder $2\pi rh$

- curved area + area of 2 circle (top + base) = total surface area

Volume of prism

- cross section area \times length
 - applicable to any prism

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- for $ax^2 + bx + c = 0$
- will give 2 values of x

Sine rule

- used to find a side or angle by using its opposing angle or side respectively

example:

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

- used to find a side by using 2 given sides and its opposing angle

example:

Area of triangle (non-right angle)

- $\frac{1}{2}$ ab sinC
- used to find the area by using 2 sides and 1 angle (not opposing any of the given sides)

Curved surface area of cone πrl

- curved surface area + circle (base) area = total surface area

h r

Volume of cone

Sum to n terms (arithmetic series)

$$\mathbf{S}_{\mathbf{n}} = \frac{\mathbf{n}}{2} [2\mathbf{a} + (\mathbf{n} - 1)\mathbf{d}]$$

a = first term

d = common difference

n = number of terms

Surface area of sphere

 $4\pi r^2$

Volume of sphere

Further Pure Mathematics (4PM1)

Formula not given in exam

© r/IGCSE Resources 2022

Trigonometric ratios (right-angled triangles)

sine $x = \frac{0}{h}$ o = opposite a = adjacent h = hypotenuse $\cos x = \frac{a}{h}$ remember: sOH cAH tOA $\tan x = \frac{0}{a}$

nth term (arithmetic series)

$$\mathbf{u}_{\mathbf{n}} = \mathbf{a} + (\mathbf{n} - 1)\mathbf{d}$$

a = first term

d = common difference

n = number of terms

nth term (geometric series)

 $u_n = ar^{n-1}$

a = first term

r = common ratio

n = number of terms

Volume of pyramid

$\frac{1}{3} \times base area \times h$

- applicable to any pyramid

Sector arc length

degrees:

radians:

 $\frac{\theta}{360}$ $2\pi r \times$

 $l = r\theta$

 $180^{\circ} = \pi rad$

Area of a sector

degrees:

© r/IGCSE Resources 2022

radians:

Logarithms

$$\begin{split} \log_{a}(xy) &= \log_{a}(x) + \log_{a}(y) \\ \log_{a}\left(\frac{x}{y}\right) &= \log_{a}(x) - \log_{a}(y) \\ \log_{a}\left(x^{k}\right) &= k\log_{a}(x) \\ n\log_{a}(b) &= \frac{n}{\log_{b}(a)} \end{split}$$

Roots (quadratics)

$$\alpha + \beta = -\frac{b}{a}$$
$$\alpha\beta = \frac{c}{a}$$

- $\mathbf{x}^2 (\alpha + \beta) + \alpha\beta = 0$
- for $ax^2 + bx + c$

additional: $\alpha^2 + \beta^2 = (\alpha^2 + \beta^2) - 2\alpha\beta$ $\alpha^2 - \beta^2 = (\alpha - \beta)(\alpha + \beta)$ $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \alpha\beta + \beta^2)$ $\alpha^4 - \beta^4 = \left(\alpha^2 + \beta^2\right)^2 - 2(\alpha\beta)^2$ $\alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$

Coordinate geometry

Gradient

Distance between 2 points

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$$

Coordinates of the point dividing the line in a given ratio

m:n

$$(\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n})$$

© r/IGCSE Resources 2022

Differentiation

 $x^n = nx^{n-1}$

 $\sin ax = a\cos ax$

 $\cos ax = -a\sin ax$

 $e^{ax} = ae^{ax}$

Chain rule

$$\int f(g(x)) = f'(g(x))g'(x)$$

Product rule

$$\frac{\mathrm{d}}{\mathrm{dx}}(\frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}) = \mathrm{f}'(\mathrm{x})\mathrm{g}(\mathrm{x}) + \mathrm{f}(\mathrm{x})\mathrm{g}'(\mathrm{x})$$

Integration

$$\int x^{n} = \frac{1}{n+1} x^{n+1} + c$$
$$\int \sin ax = -\frac{1}{a} \cos ax + c$$
$$\int \cos ax = \frac{1}{a} \sin ax + c$$
$$\int e^{ax} = \frac{1}{a} e^{ax} + c$$

© r/IGCSE Resources 2022

Area between two lines

- top line - bottom line

© r/IGCSE Resources 2022

Volume of revolution

 $\int_a^b \pi \ y^2 \, dx$

- if a curve was rotated 360° to form a 3D shape

Trigonometry Identities

- $\sin^2\!\theta + \cos^2\!\theta = 1$
- the rest are given in the formula sheet

Formula given in exam

© r/IGCSE Resources 2022

Sum to n terms (arithmetic series)

$$\mathbf{S}_{\mathbf{n}} = \frac{\mathbf{n}}{2} [2\mathbf{a} + (\mathbf{n} - 1)\mathbf{d}]$$

a = first term

d = common difference

n = number of terms

Curved surface area of cone πrl

- curved surface area + circle (base) area = total surface area

Surface area of sphere

 $4\pi r^2$

Volume of sphere

Sum to n terms (geometric series) $S_n = \frac{a(1 - r^n)}{1 - r}$

a = first term

r = common ratio

n = number of terms

Sum to infinity

$$S_{\infty} = \frac{a}{1-r}$$

a = first term

r = common ratio

- when $-1 \le r \ge 1$

Binomial series

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)\dots(n-r+1)}{r!} + \dots$$

- when -1 < x < 1

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{dx}} \left(\frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})} \right) = \frac{\mathrm{f}'(\mathrm{x})\mathrm{g}(\mathrm{x}) - \mathrm{f}(\mathrm{x})\mathrm{g}'(\mathrm{x})}{\left[\mathrm{g}(\mathrm{x})\right]^2}$$

Trigonometry identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A + B) = \sin A \cos B + \cos A \sin B \qquad \sin(A - B) = \sin A \cos B - \cos A \sin B$$
$$\cos(A + B) = \cos A \cos B - \sin A \sin B \qquad \cos(A - B) = \cos A \cos B + \sin A \sin B$$
$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \qquad \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_{a}(x) = \frac{\log_{b}(x)}{\log_{b}(a)}$$

- b can be any number as long as b > 1

r/IGCSE Resources

Resources repository | Subreddit | Official Discord server

Subreddit: <u>igcse.reddit.com</u> Discord server: <u>discord.gg/igcse</u>

Acknowledgements and Information:

© r/IGCSE Resources 2022, authored by Kirsty

The information on this booklet were generously prepared by alumni who have taken the subject, and the author(s) have been acknowledged where possible. The website links which may be in this document should not be understood to be an endorsement of that website or the site/ folder's owners (or their products/services).

This booklet is meant to be for educational purposes only, and is to remain free of cost for the benefit of all students. The moderators of r/IGCSE will be pleased to make amendments at the earliest possible opportunity if requested. This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives</u> <u>4.0 International License</u>.

© r/IGCSE Resources 2022